कक्षा 8

कक्षा 8


वर्ग और वर्गमूल की भूमिका


वर्ग की अवधारणा को समझना

जब आप किसी संख्या को खुद से गुणा करते हैं, तो आपको उसका वर्ग मिलता है। किसी संख्या का वर्ग उस संख्या को खुद से गुणा करके दर्शाया जाता है। उदाहरण के लिए, संख्या 4 का वर्ग निकालने के लिए, आप इस प्रकार गणना करेंगे:

4 × 4 = 16

परिणाम, 16, को 4 का वर्ग कहा जाता है। गणितीय अंकन में, किसी संख्या a का वर्ग a2 लिखा जाता है। यहाँ कुछ उदाहरण हैं ताकि आप वर्गों को और बेहतर ढंग से समझ सकें:

  • 22 = 2 × 2 = 4
  • 52 = 5 × 5 = 25
  • 102 = 10 × 10 = 100

आप देख सकते हैं कि वर्ग कितनी तेजी से बढ़ते हैं। गणित के कई क्षेत्रों में वर्गीकरण एक सामान्य ऑपरेशन है, और इसे समझना अधिक जटिल अवधारणाओं को समझने के लिए अनिवार्य है।

उदाहरणों के साथ वर्गों का चित्रण

वर्गों के ज्यामितीय प्रतिनिधित्व पर विचार करें। एक वर्ग संख्या एक वर्ग आकार के क्षेत्रफल का भी प्रतिनिधित्व कर सकती है, जहाँ साइड की लंबाई आधार संख्या होती है। यह इस प्रकार दिखता है:

4

उपरोक्त आरेख में, वर्ग की एक साइड की लम्बाई 4 है, इसलिए क्षेत्रफल है 42 = 16। यह क्षेत्रफल बड़े वर्ग के भीतर छोटे वर्गों की कुल संख्या द्वारा प्रतिनिधित्व करता है, जिनमें से प्रत्येक का क्षेत्रफल 1 वर्ग इकाई है।

वर्गों के सामान्य गुणधर्म

  • वर्ग हमेशा सकारात्मक होता है, क्योंकि दो सकारात्मक संख्याओं या दो नकारात्मक संख्याओं के गुणन से सकारात्मक गुणनफल प्राप्त होता है।
  • जब किसी पूर्णांक का वर्ग करते हैं, तो परिणाम को संपूर्ण वर्ग कहते हैं।
  • संपूर्ण वर्गों की श्रृंखला है: 1, 4, 9, 16, 25, 36, ...

वर्गमूल की अवधारणा का अन्वेषण

किसी संख्या का वर्गमूल वह मान होता है, जिसे खुद से गुणा करने पर मूल संख्या मिलती है। यदि a2 = b, तो a को b का वर्गमूल कहा जाता है। वर्गमूल के लिए प्रतीक है । उदाहरण के लिए:

√16 = 4

इसका अर्थ है कि 4 × 4 = 16।

उदाहरणों के साथ वर्गमूल का चित्रण

4

यह चित्र 16 के वर्गमूल को दर्शाता है, जो कि 4 है। ऊपर के वर्ग की प्रत्येक साइड 4 इकाइयों लंबी है। इस प्रकार, इसका क्षेत्रफल 16 वर्ग इकाइयाँ है, जो दर्शाता है कि 16 का वर्गमूल 4 के बराबर है।

वर्गमूल की गणना

गैर-संपूर्ण वर्गों के लिए वर्गमूल की गणना अधिक जटिल हो सकती है और अक्सर अनुमान लगाने या कैलकुलेटर का उपयोग करने की आवश्यकता होती है। उदाहरण के लिए, 20 का वर्गमूल लगभग 4.472 है।

यहाँ बताया गया है कि किसी अपूर्ण वर्ग के लिए वर्गमूल का मैन्युअली अनुमान कैसे लगाया जाए, जैसे 20 के लिए:

  1. दो क्रमागत पूर्णांकों को खोजें, जिनके बीच वर्गमूल स्थित है। √20 के लिए, ये दो संख्याएँ 4 और 5 हैं क्योंकि 42 = 16 और 52 = 25
  2. इन दो संख्याओं का मध्य बिंडु या औसत निकालें, मान लें 4.5, और इसे वर्गित करें: 4.52 = 20.25
  3. चूंकि 20.25 करीब 20 है, 4.5 एक अच्छा अनुमान है, लेकिन हम इसे और गणनाओं के साथ और सुधार सकते हैं।

समस्या समाधान में वर्गमूल का उपयोग

वर्गमूल का उपयोग अक्सर विभिन्न गणितीय गणनाओं में किया जाता है, जिनमें दूरी खोजने, द्विघात समीकरणों को हल करने, और अधिक शामिल हैं। यहाँ एक व्यावहारिक उदाहरण है:

मान लें कि आपके पास 64 वर्ग इकाइयों के क्षेत्रफलक के साथ एक वर्ग है, और आप एक साइड की लंबाई पता करना चाहते हैं। क्योंकि क्षेत्रफल का सूत्र साइड गुणा साइड होता है, आपको क्षेत्रफल का वर्गमूल ज्ञात करना होगा:

√64 = 8

वर्ग की एक साइड की लंबाई 8 इकाइयाँ है।

व्यावहारिक उदाहरण और अभ्यास

आइए कुछ अभ्यास करें। इनका प्रयास खुद से करें:

  1. 7 का वर्ग क्या है?
  2. 49 का वर्गमूल ज्ञात करें।
  3. यदि किसी वर्ग का क्षेत्रफल 144 वर्ग इकाइयाँ है, तो प्रत्येक साइड की लंबाई क्या है?
  4. 30 के वर्गमूल को एक दशमलव स्थान तक मानकृत करें।

निष्कर्ष

वर्ग और वर्गमूल बुनियादी अवधारणाएँ हैं जिन्हें आप अपनी गणित की पढ़ाई और वास्तविक जीवन के अनुप्रयोगों में उपयोग करेंगे। इन अवधारणाओं को समझना महत्वपूर्ण समस्या-समाधान कौशल विकसित करने में मदद करता है। अभ्यास करते रहें, और वर्गों और वर्गमूल की खोज के लिए रुचिकर गणितीय चुनौतियों का उपयोग करें।


कक्षा 8 → 10


U
username
0%
में पूर्ण हुआ कक्षा 8


टिप्पणियाँ